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Some aspects of the use of symmetry in bifurcation calculations are discussed. First, it is 
shown how substantial reductions in cost are obtained in computing symmetry-breaking 
bifurcation points by exploiting the underlying symmetry of a problem. This is demonstrated 
in a tinite-element calculation of 2-dimensional Benard convection in a finite cavity. Second, 
the stability of paths of symmetry-breaking bifurcation points, which occur when a second 
parameter in the problem varies, is investigated. A criterion is established for deciding whether 
intersection of such paths is allowed by symmetry constraints. 

1. INTR~DLJCT~~N 

In some recent papers [l-4] we have studied certain bifurcation problems in 
fluid flow by using extended systems of steady state equations. The solution of an 
extended system gives the location of a bifurcation point as well as the solution of 
the original equations at that point. The choice of extended system depends on the 
type of bifurcation point under consideration. In the case of symmetry-breaking 
bifurcations in the Benard and Taylor problems, we applied an algorithm due to 
Moore [5] for which Newton’s method was found to give rapid convergence. 
However, this technique is unnecessarily inefticient, since one must solve the 
equations over the entire domain; no account is taken of the symmetry which is 
broken at the bifurcation. 

Recently, Werner and Spence [6] have proposed a method for tinding symmetry- 
breaking bifurcation points which uses explicitly the underlying symmetry of the 
problem; the computation is carried out in the subdomain over which the solution 
posseses the symmetry which is broken at the bifurcation. This offers a substantial 
saving in computation time, reducing the number of degrees of freedom by a factor 
of 4 in two dimensions. One purpose of the present paper is to show how the Wer- 
ner-Spence algorithm may be implemented in a finite element formulation and 
applied to the 2-dimensional problem of Benard convection in a cavity. The cost of 
the computation is found to be reduced by a factor of 10 in comparison to the 
Moore algorithm which takes no account of symmetry. This reduction is to be 
expected in calculations using a direct solution method as here. 
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The Werner-Spence algorithm provides a general technique for locating sym- 
metry-breaking bifurcation points on an arbitrary solution branch. In Benard con- 
vection, the bifurcation is actually from the trivial solution, and we derive an 
algorithm which exploits the special nature of this type of problems This is found to 
give a further cost reduction of one half. 

Qnce the value of a parameter at which there is a bifurcation has been found, one 
is usually interested in finding how this value varies as a second parameter is 
changed. For example, in Benard convection in a closed cavity, the critical value of 
Rayleigh number is frequently computed as a function of the aspect ratio of t 
cavity. In this way a path of symmetry-breaking bifurcation points is traced out m 
the 2-parameter space. The question which then arises is what happens when this 
path crosses a second path of symmetry-breaking bifurcation points? In the Benard 
problem described, it is found empirically that such paths sometimes cross and 
sometimes avoid crossing; for Benard convection in a cylinder the paths always 
avoid intersecting. A second aim of this paper is to establish a criterion for deciding 
whether or not paths of symmetry-breaking bifurcation points m a 2-parameter 
problem can cross in a stable way. 

Finally, we point out an important feature of finite-element calculations of 
Benard convection. Most of the commonly used elements produce a spurious 
source of momentum; this leads to errors of several percent in the predicted critical 
Rayleigh number, unless exceptionally fine meshes are used. The present com- 
putations were carried out with a particular element> with piecewise-linear 
approximation of the pressure and quadratic velocities and temperature9 which 
removes this problem. 

2. EXTENDED SYSTEMS 

2. I. SJwmetry-Breaking Bifurcation Points and Their Compumio~? 

In this section we summarize the theory of symmetry-breaking bifurcation points 
and describe algorithms for their computation. The material here relies heavily on 
Werner and Spence [6] and Werner [7]. 

We are concerned with nonlinear problems which depend on two parameters: 

where x is a state variable, 1 and p are real parameters, and f is a smooth mappmg 
on a Banach space X. We assume that f satisfies the symmetry relation 

where r is a representation over X of the group Z2 x Z2. A physicai example of this 
symmetry is given in Section 3 by Eqs. (3.8) and (3.9). We let the two generators of 
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f be E and /? so that r= {I, a, /I, @I ( E/~cz)}. The mappings a and /3 introduce a 
natural decomposition of X into 

~=&@L@JLs@~a~ 
where 

xss= {xEx~~x=xJ3x=x~ 

xsa= {xEX~ccx=x,/?x= -x I 
xax= {XEX[ctX= -x, /?x=x 

(2.3a) 

(2.3b) 

xaa= {xEX]txx= -x,px= -x). 

The point (x0, &, p,,) is a singular point of (2.1) if c = fJxO, &,, ,DJ is singular, 
otherwise (x0, &, ,n,,) is a regular point. A singular point is simple if there exists 
&,EX, v~EX’ (the dual of X) such that 

Null(~) = Span{&); Range(e)= {y~Xiv~y=Ol. (2.4) 

It is easy to show that, if x0 E Xss, then $,, belongs to only one of Xss, Xsa, Xas, or 
Xau. We shall only consider the case &, $ Xss, that is, the symmetry-breaking case. 
Under the above assumptions it can be shown that 

qf(Jx=o for all x E Xss. (2.5) 

We consider first the case p lixed, i.e., 

g(x, A) = f(x, 2, p) = 0. (2.6) 

It is easy to show using (2.5) and $0 belongs to one of XJa, Xas, XaG that 

wJ& = Q vo~~x~o~o = 0. (2.7) 

Standard bifurcation theory now gives that (x0, &) is a pitchfork bifurcation point 
of (2.6) if and only if 

%k~x4kl + .&~o~~ + 09 (2.8) 

where 

g:v+gy=o, VEXss. 

The familiar bifurcation diagram for this case is shown in Fig. 1. 
Werner and Spence [6] showed how such points could be computed in a stable 

and efficient way. They proved that the extended system 

(2.9) 
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xi 
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A0 A 

FG. 1. Bifurcation diagram showing the symmetry-breaking bifurcation point (.yO, I,,). 

where LEX’ and X1 is one of XsD, Xas, Xaa depending on which & belongs to, has 
an isolated solution at (x0, $,,, &,), if and only if (x0, A0 j is a symmetry-breaking 
bifurcation point. This result means that Newton’s method may be used to solve 
(2.9). In [6] Werner and Spence discussed its implementation and gave several 
examples of algebraic and ordinary differential equations which exhibit & and 
2&x Z2 symmetry. Using the Z2 symmetry reduces the number of degrees of 
freedom in the discrete problem by about halc we shall show in the next section 
that the Z2 x Z2 symmetry can be used to reduce the number of freedoms by about 
a factor four. 

We now consider two parameter problems and introduce the extended system 
corresponding to (2.9) 

If (2.8) holds then (y, [lo) is a regular point of (2.10) and the implicit function 
theorem ensures that there is a neighbourhood of (yO, no) in which y can be 
parametrized by p. Hence standard continuation methods can be used to compute a 
path of symmetry-breaking bifurcation points. 

If there is a trivial solution for all values of A, p, i.e., f(xO, 1, p) = 0 for all A and p> 
then (2.10) simplifies to 

and this can be used to calculate bifurcation from the trivial solution. Benard con- 
vection is one example where this algorithm can be applied. 
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2.2. Intersection of Paths of Symmetry-Breaking B@-cation Points 

In a 2-parameter problem there may well be more than one path of symmetry- 
breaking bifurcation points and we now consider whether or not these paths can be 
expected to intersect. An example is given by the Benard problem, when the bifur- 
cating convective branch may have varying numbers of cells. The following example 
shows that, in general, we cannot expect intersection in paths of symmetry-breaking 
bifurcation points in 2-parameter problems with only Z2 symmetry. Consider the 
following problem 

(2.11) 

The solutions are 

(1) ,t=j=O for all 1, ki, 
(2) i=o, j+= &/(A+p), i+p>O, 
(3) i= &/(Lp), p=o, A-p>o, 

(4) i= &J&u), g= &/(1+/l), A> l/l\. 

In solution (4) any combination of signs is possible; these branches bifurcate 
from the nonzero branches (2) and (3) along the line ,I = i/ii. These bifurcations are 
the so-called secondary bifurcations which arise near a multiple eigenvalue [8]. The 
Z2 symmetry obeyed by (2.11) is of course 

f( --it, -9, 1, p) = - f(i, p, 1, p), (2.12) 

and the paths of symmetry-breaking bifurcation points are 

iz$zO, 1 = kkl. (2.13) 

We now perturb (2.11) by an arbitrary small amount, but still preserving the Z2 
symmetry (2.12), to give the following system 

(2.14) 

Equation (2.14) still has two paths of symmetry-breaking bifurcations points with 
.f = 9 = 0 but they are now given by 

det -(l-PI 
-iJ+d 

= 0, 
E 

i.e., A*--~‘-E’=O. (2.15) 

The solutions of (2.15) are 

2 = &/q/l* + &2), (2.16) 

which are two curves that do not intersect, see Fig. 2. 
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FIG. 2. The effect of a perturbation on the intersection of parhs of symmetry-breaking bifxcation 
points. for problems with Z2 symmetry. where the solid line is s = 0 and the dashed line is E > 0. 

This simple example illustrates that, in general, in a 2-parameter problem with 
symmetry a double eigenvalue corresponding to the intersection of two paths of 
symmetry-breaking bifurcation points is not stable when subject to small pertur- 
bations, and hence is not to be expected in a numericai calculation which always 
contains such perturbations. The situation is different, however? when the symmetry 
group is Zz x Zz. Let XI and X2 by any distinct pair of Xx0, Xas, XaD and let 1~~ and 
yz be their corresponding symmetry operators so that ;jIx = -x7 yzx = x for x E XI 
and 1~~ x = x3 ylx = -x for x E Xx; we call (x0, &, pO) a double symmetry-breaking 
bifurcation point if 

where 

$x=0 for XEX?> @x=0 for xEX~ 

and 

where 

fxV(J + fj. zz 0, vcl e k. 

We now extend the notation we used for the system (2.10). Let Fs,I be F acting 
on Xss x XI x R, similarly for Fs,I. Let F31,1 be F acting on (Xsx@Xz)xX, XI?, 
similarly for FsI,z. Solutions to Fs,I characterize symmetry-breaking bifurcations 
from a compietely symmetric branch (i.e., a branch lying in Xss); at such points the 
yI symmetry is broken but the y1 symmetry is preserved so that the bifurcating 
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branch lies in Xss CD X,. Along a branch lying in Xss @ X, the yz symmetry may be 
broken at a symmetry-breaking bifurcation point which is the solution of Fs,,2. 
Similar interpretations apply to the systems F3,* and FIz,,. We note that a solution 
of F’s,1 is always a solution of Fsz,r but that the converse is not true. The four 
w@== F5.1y Fs,2v Fsl,2v ad Fs2,1 characterise all the possible symmetry-breaking 
bifurcations that can occur in this problem. We have the following theorem. 

THEOREM 1. Let (x0, &, pO) be a double symmetry breaking b$urcation point 
defitzed by (2.17). Then 

ProoJ The proof of (i) is immediate. To prove (ii) one easily shows that 
‘f’O=(vz,O,O) and @O=($z,z,O), where fxz+fxxt$,t$2=0, ZEX,, are the unique 
left and right eigenvectors of Fy2,,iY. The condition (2.18) can then be shown, by 
computation, to be equivalent to 

where 

F:2.1;y Vo + Fs2.,;p = ct 
It is easy to check that 

and 

Similarly for F3r,z. 1 

Using the implicit function theorem and part (i) of the above theorem shows that 
two paths of symmetry-breaking bifurcation points intersect at a double symmetry- 
breaking bifurcation point and one can easily check that the angle between these 
paths is nonzero if and only if condition (2.18) is satistied. Near a double singular 
point a variety of behaviour is possible depending on the direction (sub- or super- 
critical) of the various bifurcations. All of it will of course be consistent with 
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Theorem 1. In Figs. 3a and 3b we give an illustration of the theorem. In this exam- 
ple all the symmetry-breaking bifurcations of the basic equations are supercritical. 
Figure 3a shows the projection on the (,I- ~4) plane of the various bifurcations. The 
two paths on which FS2,r and FSI.2 = 0 are paths of secondary bifurcations which 
necessarily arise at bifurcation at a multiple eigenvalue [g]. These paths are the 
bifurcating solution branches of the systems FS2,r and Fsr.? which arise from the 
pitchfork bifurcation point in these systems (Theorem l(ii)) at (&,,u~). Figure 3b 
shows a state diagram for ~>/4~. The two functionais /, and l2 are such that 
/r(x)=0 for VEX? and 12(x)=0 for XEX~, so that they measure the component of 
the solution in the spaces X, and X2, respectively. 

Finally we introduce the following extended system which could be used to com- 
pute, numerically, double symmetry-breaking bifurcation points (cf~ W7erner [Y7 

Using the methods of Werner and Spence [6] and Werner [7] one can prove the 
following theorem. 

THEOREM 2. Let (x0, &,, pO) be u double s~vnrnetty-breaking bifurcation poirzt c$ 
f. Then (2.20) has an isolated solution if and only if (2.18) is satisfied. 

The main consequence of this theorem here is that double symmetry-breakmg 
points are stable to perturbations which preserve the Z2 x Z2 symmetry. 

To summarize then, we have shown in this section that two paths of symmetry- 
breaking bifurcation points which break a different symmetry in each case may 
cross in a stable way in a Z-parameter problem. If however the same symmetry is 
broken on each path then we would not expect them to cross. 

FIG. 3. (a) Two paths of symmetry-breaking bifurcation points, for problems with 2:~ Z2 sym- 
metry, and the two paths of secondary bifurcations which arise at their intersection. (b) The state 
diagram corresponding to Fig. 3a for a tixed value of p > ,u,,. 
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3. EQUATIONS AND FINITE-ELE~IENT METHOD 

We are considering 2-dimensiona convection in a box of height H and width L. 
We use Cartesian coordinates .x* and y* and denote the velocity by u* = (UT, UT), 
and the temperature and pressure by T* and p*. The natural convection is 
described by the steady Navier-Stokes and energy equations which we solve in the 
Boussinesq approximation. This approximation neglects all variation of fluid 
properties, except for the change in density which gives rise to the buoyancy force 
for which a linear dependence of density on temperature is assumed. The equations 
become 

(3.1) 

(3.4) 

In the above equations x, JJ, u, p, and T are given by 

T= 
T*-T; 1 
T;-TT- T-” ’ c 1 

where /?= L/H, Ra = ga( Tf - T$) L’/Kv, Pr = v/K. TT and T,ff are the tem- 
peratures of the top and bottom of the box, LX is the coefficient of volumetric expan- 
sion of the fluid, K is its thermal diffusivity and v its kinematic viscosity. The den- 
sity at some reference temperature, TT say, is denoted by pO and g is the 
gravitational acceleration. The term RaPr T on the right-hand side of Eq. (3.2) is 
the buoyancy force which arises from the linearised density variation assumed in 
the Boussinesq approximation. 

Equations (3.1)-(3.4) hold in the region 

The boundary conditions are that Us and u2 are zero on the whole boundary of D 
and T is zero on y = ki with c?T/dx= 0 on x = &$. These equations admit the 
trivial conducting solution Us = Us = p = T= 0. (Note that T is the non-dimensional 
temperature perturbation.) 
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It is convenient to convert Eqs. (3.1 b( 3.4) and the boundary conditions into an 
operator equation in an appropriate Hilbert space. We introduce the foiiowmg 
notation: let L’(D) be the space of functions which are square integrable over D; let 
~LV’~‘(D) be the space of functions whose generaiized first derivatives lie in L’(D). 
Let kVi2( D) be that subspace of IV’%‘(D) whose elements vanish (weakly) on the 
boundary of D and let K’k2(D) be the subspace whose elements vanish weakly on 
I’= j& IV1.2(D)2 is the space of vector-valued functions each component of which 
is in P@(D). Finally let H = i?‘$I(D)’ x L2(D) x K’+?(D), We introduce the fohow- 
ing functionals 

(3Sa) 

We now define the operator 

A:HxRxR+H, 

&4(U, Ra. b) = W, 

where 

~(u;u,v)+b(u>v)=(w,v) for all V E H. (3.6) 

and <., .) denotes the inner product in the Hilbert space H. For fixed U the right- 
hand side of (3.6) detines a bounded linear functional on H, which by the Reisz 
representation theorem means W exists and thus A is well detined. A cfassicai 
solution of (3.1)-( 3.4) satisfies 

A(U, Ra, ,0) = 0. (3.7) 

§olutions of (3.7) are called weak or generalized solutions and may, under certam 
smoothness conditions, be shown to be classical sohrtions of (3~1 k(3.4). The weak 
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form of Eqs. (3.1)~-(3.4) given by (3.7) is convenient for studying the effects of the 
symmetry on both the continuous and discrete (finite-element) versions of the 
problem. 

We now consider the symmetry properties of A. Define SX, SJ g Z(H) by 

&LJ= s.ylulk .Y), d% yj, PC-& YL m Yll 

= b,k -JJ), -&, -19, ~(4 -J), -7-k -J~I (3.8) 

s>JJ = S~).(LQ(X, y), 242(x. y), p(x, y), T(X> y)) 

=(-24,(-x, ,by, +-X, ~9, p(-.~, ~9, 7--x, jql, (3.9) 

for smooth functions. and use continuity to extend the definition to the whole 
space. Clearly SY represents reflection about the -x-axis and S,, represents reflection 
about the ~9 axis We also note that 

s.x s>, u = SJ s.y u for all U E H. 

A simple change of variable in the integrals in (3.5) gives the following 

u(SyU; srv, W) = u(U: v, LTyW) 

b(s.yu, W) = b&J, s.xw) 

a(s~u;s~,v,w)=~7(u;v,s~~w) 

b(SJJ, W) = b(U, SyW). 

Similarly we have 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

Let r= {Z, SX, S,,, S.YSY] which is a representation of Z2 x Z2 over H. Using (3.6j 
and (3.8)-(3.14) we can show that (cf. (2.2) in Sect. 2): 

PROPOSITION 1. For A d&zed by (3.61, 

NW, Ra, LO = YWJ~ I@ ,4 for all ~1 E f-, U E H, Ra, /I e I?. (3.15) 

Thus the theory described in the previous section applies to the convection 
problem we are considering here. We define the region III+ by 

D+=~(~~,~)lO~~~~,O~~~~~. 
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It is easy to show, using change of variables in the integrals in (3.5) that the follow- 
mg holds 

where G+ is defined as in (3.5) but with the region of integration D replaced by D ‘. 
Using the results of the last section a symmetry-breaking bifurcation poim of 

(3~7) corresponds to an isolated solution of 

where 

with {y,, ?~lT -h) = {L SJK &) and I is a normalization of @~ The Frechet 
derivative of A, DA, is defined by 

DA(U, RLI,P)@=W 

where 

aJi @, V) + u(@; u, V) + 6(@. V) = (W, V) for all V E H. (3.18) 

The crucial point is that since U and @ are eigenvectors of all the symmetry 
operators in f-, Eq. (3.16) may be used to express all the integrals u-r (3.17) as 
mtegrals over D+. Thus we need only discretize the region D+ and this reductes the 
number of freedoms in the problem by a factor of approximately 4 in two dimen- 
sions. 

We used a Galerkin finite-element method to discretize the equations. This is 
done by replacing the space H by a tmite-dimensional subspace T-I,?. We used 9. 
noded quadrilateral elements with biquadratic interpolation for the veIocities and 
temperature and piecewise linear, discontinuous, interpolation for the pressure. 
Provided the tinite-element mesh is symmetric with respect to reflection about the .X 
and y axes all the theory given in this section apphes equally to the discretization. 
essentially because H,l c H. (For further details see the paper by Cliffe and 
§pence [ 163). The Newton method of solution of the discrete version of (3.17’) is 
described in detail by Werner and Spence [6]. We mention that this involves two 
LLT factorizations (essentially of the symmetric and antisymmetric .Jacobran 
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matrices) and the solution of three linear systems of equations. The LU fac- 
torizations and subsequent solutions were carried out using the frontal method [9]. 
The matrices have a banded structure with one of them having, in addition, a full 
column. This is handled automatically by the frontal procedure by keeping the 
variable corresponding to the full column in core throughout the factorization 
procedure. The penalty for this is minimal. The frontal method we used employs 
partial pivoting [9] and we encountered no problems with singularities or ill- 
conditioning. 

4. RESULTS 

The algorithms developed in the previous section will now be applied to Benard 
convection in a 2-dimensional cavity. The geometry is shown is Fig. 4; a fluid is 
conlined between rigid horizontal surfaces and rigid sidewalls. It is heated by main- 
taining its lower surface at a constant, higher temperature than the upper one. Heat 
is transferred by conduction for Rayleigh numbers below a critical value Ra,, and 
there is no-flow equilibrium state which is stable; any perturbations are suppressed 
by the action of thermal conductivity and viscosity which restores the equilibrium. 
However, for Rayleigh numbers greater than Ra, , the restoring forces are insuf- 
licient to overcome the buoyancy generated by perturbations and the equilibrium is 
unstable; the perturbations grow and steady convection results. For a cavity of 
aspect ratio one, this flow consists of a single cell and because of the vertical sym- 
metry of the problem there are two possible senses of rotation for this cell. 

The trivial, no-flow state is in fact a solution of the steady state equation for all 
values of Ra (although it is unstable above Rar), and there are successive bifur- 
cations from the trivial branch. For example, the second bifurcation at Ral 
corresponds to a 2-cell solution for an aspect ratio of one. These bifurcation points 
move as the aspect ratio varies, and trace paths in the 2-parameter space formed by 
the Rayleigh number and aspect ratio. The considerations of the previous section 
allow us to predict that only paths of bifurcation points which break different sym- 

FIG. 4. The geometry for confined Bknard convection. All surfaces are rigid. 
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metries will cross. Thus, as the aspect ratio increases from one, the path of points 
representing bifurcation to a l-cell solution will intersect that corresponding to 
bifurcation to a 2-cell solution, since the i-cell solution breaks both horizontal and 
vertical symmetries while the 2-cell solution breaks only the horizontal symmetry. 
On the other hand7 the path of l-cell bifurcation points will not intersect that 
corresponding to bifurcation to three cells, since they both break the same horizon- 
tal and vertical symmetries. Instead the paths are expected to approach and recede7 
gradually exchanging identities so that the l-celi bifurcation point develops 
smoothly into a 3-cell point. This phenomenon was observed, but not explained 
correctly, by Iackson and Winters [lo] in a linite-element study of the Benard 
problem. Their results are shown in Fig. 5, where the numbers show the number of 
cells which develop from the bifurcation point It is worth noting that in the related 
problem of Benard convection in a cylinder, the same symmetry is always broken 
by each bifurcation point, and no paths are expected to cross as observed by 
Brown Yamaguchi, and Chang [ 111. 

The Werner-Spence algorithm and that for bifurcation from the trivial solution 
were applied to the Benard problem. The calculations were carried out over a cluar- 
ter of the domain for bifurcation both to an odd and an even number of cells. In 

3000 

2000 

FIG. 5. The paths of symmetry-breaking bifurcation points for the confined Bknard problem? as the 
aspect ratio fi varies [lo]. The curves are labelled by the number of cells which develop from the bifur- 
cation point. 
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each case, the same boundary conditions were applied to the solution U on the 
inner boundaries, namely 

(i) horizontal axis ( JT=O): dul/dy= i?p/t?~~=O, u2 = T=O. 
(ii) vertical axis (X = 0): uI = 0, au2/aay = appx = dT1d.x = 0. 

In the case of an odd number of cells, both horizontal and vertical symmetries 
are broken, that is the eigenvector @ satisfies 

The boundary conditions for @ = (dI, &, K, 0) are then 

(i) horizontal axis ( J,=O): &I = TC =O, c?&/~J~= a/$=0. 

(ii) vertical axis (x=0): adl/ady=O, +I = 7c= 19=0. 

For bifurcation to an even number of cells, only the horizontal symmetry is 
broken, that is, 

The boundary conditions for @ become 

(i) horizontal axis (J> = 0): q5, = 7-c = 0, ad2/ay = iwpJ’ = 0. 
(ii) vertical axis (-x = 0): 4 I = 0, &I~~/c?.x = &,/c?,Y = Z%/&X = 0. 

It is important to note that we are effectively solving the problem on a quarter of 
the domain with the symmetry conditions being handled by appropriate boundary 
conditions on the symmetry axes. In particular, no special elements are required 
and no symmetry need be imposed on the elements (it is implicit that the dis- 
cretization of the full domain is generated by reflecting first about the x axis and 
then about the y axis or equivalently the reflections may be carried out in reverse 
order). 

The Navier-Stokes equations were solved for values of the width-to-height ratio 
from 1.0 to 3.0 in steps of 0.2 using a grid of 2 x 2 elements. The computational time 
for these 11 solutions was found to be 6.6 s using the Werner-Spence algorithm. 
The same calculation was found to take 66.2 s with the Moore algorithm over the 
full domain on a grid of 4 x 4 elements (Cliffe and Winters [2]). Although the Wer- 
ner-Spence algorithm has a factor of four fewer degrees of freedom than the Moore 
system, a much greater reduction in cost arises here due to the use of the frontal 
method for solving the matrix equations. 

The system for predicting bifurcation from the trivial solution was found to give 
a further reduction in cost of one half, the 11 bifurcation points being computed in 
3.2 s, a factor of over 20 faster than obtained with the Moore algorithm. 
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4.2. Choice of Finite Element 

The trivial, no-flow solution of the Boussinesq equations corresponds to a simple 
balance between buoyancy term and pressure gradient. The requirement of mixed 
interpolation forces us to use a lower order of interpolation for the pressure than 
for the temperature and velocity. The result is that it may not be possible to satisfy 
exactly the balance between pressure gradient and buoyancy. Gresho et al [13 ] 
demonstrated, for example, that the 9-node element with bilinear pressure 
approximation gives rise to a spurious momentum source, and suggested the use of 
an element with discontinuous pressure approximation. Cliffe, Jackson, and 
Winters [14] proposed an alternative element with discontinuous pressure 
approximation and showed that it was able to satisfy exactly the pressure 
gradient-buoyancy balance. In the context of their work, this allowed natural con.- 
veetion at very high Rayleigh numbers to be computed. 

Ail the present calculations were carried out with the discontinuous pressure 
element of Cliffe, Jackson, and Winters [ 14] and Table I shows that this gives 
excellent agreement with an independent calculation, using a different method, by 
Luijkx and Platten [ 151. The table also gives the finite-element predictions of Cliffe 
and Winters [2] using a grid of 4 x 4 elements with continuous, linear pressure 
approximation over the full domain. The spurious momentum source produced by 
this element gives rise to an error of up to 2%. A similar error is present in the 
work of Jackson and Winters [lo] and explains the discrepancy between their 
results and Luijkx and Platten [15]. It should to be noted that the present grid of 
2 x 2 elements over the quarter-domain is clearly inadequate when predicting 
accurately the bifurcation to 3 cell flow at the largest aspect ratios of 2.8 and 3.0. 

TABLE I 

Lowest Critical Rayleigh Number for Bifurcation to an Odd-Cell Flow for Different Aspect Ratios 

Aspect ratio 

P 

Present results Luijkx and Platten [ 151 ChtTe and Winters [2] 

1.0 2594 2585 265 1 
1.2 2296 2291 2345 
1.4 2211 2215 2322 
1.6 2392 2393 2435 
I.8 2550 2589 
2.0 2546 - 2563 
2.2 2278 - 2250 
2.4 2031 - 1959 
2.6 1856 - i740 
223 1736 1928 1576 
3.0 1651 i871 1450 
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5. CONCLUSIONS 

A recently proposed method for tinding symmetry-breaking points has been 
implemented in a finite-element formulation and applied to 2-dimensional Benard 
convection in a tinite cavity. It was found to reduce the computational cost by a 
factor of ten when compared with an earlier method which does not exploit the 
symmetry of the problem. It was shown that a further factor of two may be 
obtained for those cases where bifurcation is from the trivial solution, as in Benard 
convection. 

When a second parameter is varied, bifurcation points trace out paths in a 2- 
parameter space which may or may not intersect with one another. A criterion has 
been established for deciding whether or not paths of symmetry-breaking bifur- 
cation points are able to cross in a stable way. 

Finally, it was shown that in the finite-element method, most commonly used 
elements give rise to a spurious momentum source that leads to systematic error in 
predictions of the critical Rayleigh number. A method for overcoming this was 
demonstrated. 
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